NZEB at CEPT University: A Living Laboratory

Yash Shukla Centre for Advanced Research in Building Science and Energy, CEPT University, Ahmedabad

Adaptive Comfort and Retro commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

What is a Net Zero Energy Building?

CEPT University Campus Site

Motivation for NZEB

- Application of Theories
- Example that can be replicated
- Living Laboratory
- Source of new knowledge

Building Performance with Life cycle Analysis Approach

Design

Construction

• Operation

Building Performance with Life cycle Analysis Approach

How to **Design** for Building Energy Efficiency Design as per Adaptive Thermal Comfort Model

How to **Construct** for Building Energy Efficiency Construct to increase comfort hours and increase efficiency of building mechanical system

How to **Operate** for Building Energy Efficiency Operate to reduce energy consumption

Iterative Design Process

- Predesign
- Conceptual Design
- System Development
- Systems Optimization

Three in-person charrettes in Ahmedabad Over 20 virtual meetings and presentations

Predesign Goals

Pre-design energy simulations of a benchmark building

Investigated 80 energy conservation measures (ECMs) in the Ahmedabad climate

Building Massing Analysis

Adaptive Comfort and Retro Commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

Daylighting Analysis Areas

Sunshading, Illuminance, Luminance, Daylighting Autonomy, UDI

Adaptive Thermal Comfort

Passive Cooling Potential

Assess Thermal Comfort and Natural Ventilation with CFD Model

Month	Morning	Afternoon	Evening		
Jan	Windows Closed	Windows Open	Windows Open		
Feb	Windows Closed	Windows Open	Windows Open		
Mar	Windows Open	No	No		
Apr	No	No No			
Мау	No	No	No		
Jun	No	No	No		
Jul	No	No	No		
Aug	No	No	No		
Oct	Windows Open	No	No		
Nov	Windows Open	No	Windows Open		
Dec	Windows Closed	Windows Open	Windows Open		

Adaptive Comfort and Retro Commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

Schematic Design and Operational Strategies

Comfortable Outdoor Environment

Hot Outdoor Environment

HVAC Systems

• Primary and secondary cooling systems

- Radiant System
- Dedicated outdoor air system
- VRF / VRV
- Chilled water plant
 - Variable speed
 - Inverter chiller

HVAC Systems

HVAC Systems

Adaptive Comfort and Retro Commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

Building Integrated PV

BIM System Integration

Savings by Measure Type

Building External Views

Building Internal Views

"Every line is the perfect length if you don't measure it" -Marty Rubin

Monitoring and Control - NZEB

Building Information Systems

- Thermal Comfort, Temp Humidity
- Visual Comfort, Light
- Occupancy
- Outdoor conditions
- Equipment usage

Building Management Systems

- Energy Management
 - Energy used to maintain comfort
 - Energy used for equipment

Monitoring and control system

Details of Monitoring, Integration and Controls Philosophy

Building Energy Monitoring System

Building Energy Monitoring System

Environment and Energy

Environment and Energy

Adaptive Comfort and Retro Commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

Thermal Comfort Surveys and Occupant Feedback

How do you describe your current thermal sensation?

Adaptive Comfort and Retro Commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

Thermal Comfort Surveys and Occupant Feedback

Are you comfortable?

Energy Consumption Summary

Monthly Consumption and Generation

End Use Energy Consumption

End Use Energy Performance Index (EPI) in 2016

Comparison with Design Goals

Energy Performance Index (EPI) in 2016

Do we have all ingredients to build NZEBs in India?

"Buying the right computer and getting it to work properly is no more complicated than building a nuclear reactor from wristwatch parts in a darkened room using only your teeth" - Dave Barry

Thermal Characterization

• Thermal Conductivity

• Thermal Diffusivity

• Specific heat

Thermal Characterization : Wall

• Guarded Hot Box

 Non-homogenous Materials

• ASTM C 1363 ISO 12567

Optical Property Characterization

• Solar Reflectance

• Solar Transmittance

• ASTM / ISO / EN

Fenestration Characterization

• Solar Calorimeter

• Air leakage Chamber

• NFRC & ASTM

Construction Database

• Indian Materials

• Glazing Systems

o ISO / ASTM

U-factor Calculator

OME	ABOUT	SUBJECT A	A LIVING LABOR		LABORATORY	Y PERSON	INEL R	ESOURCE	NETWORKS	CONTACT US
Vall ar	nd Roof As	sembly	U-value	Calc	ulator					
12mm 115mm 15		Location : Assembly T Select no. o	State ype : of layers	Time Time		City :				
			Select Material :		Report V		Thickness :		Outside	
					Plintinal a		Thickness :	: Inside		
	Inside	Inside	Calculate Save my assembly Thermal Properties							
	o alla			,	Name	Conductivity (W/m-k)	Specific hea ()/kg-k)	at Density (kg/m*)	Sample Source	Material Information
	1.1.1		Layer 1	Gyps	um	0.40	1.34	50	ISO 10456	More
	C. La La La		Layer 2	Modu	lar brick	0.72	0.77	60	CIBSE Guide	More
	140		Layer 3	Ceme	mt	0.40	1.23	72	CIBSE Guide	More
			Assent	blγ	Heat Capacity (k1/m²-k)	Surface to Surface U-value (w/m²-k)	Overall U-value	Calculation Method	Internal Heat Transfer Coefficient (w/m²-k)	External Heat Transfer Coefficient (w/m²-k)
			Layer 1+	2+3	100	5.9	5.9	ASHRAE	0.2	0.2
			Layer 1+	243	100	5.9	5.7	CEPT	0.1	0.2

• Go to the Tools main page

Adaptive Comfort and Retro Commissioning

EDGE 2017, ASHRAE Region-at-large, Sub region II, 8th December 2017, Mumbai

Hygrothermal Characterization

- Sorption Isotherm
- Vapor Transmission

• Water uptake

SPSS and Mirror Box

- Daylight Simulation
- Mirror Box
 - Cloudy Sky Simulation
- Single Patch Sky Simulator
 Clear Sky Simulation

Climate Comparison

NZEB Partners

- Antech Consultants
- Clanton & Associates
- Deep Electricals
- Gujarat Energy Development
 Tripur Builders
 Agency, Govt of Gujarat
 US Agency for
- Infinity Technologies
- Owens Corning
- Pankaj Dharkar Associates
- Pidilite Industries

- SGL Carbon
- Shashwat Cleantech
- The Weidt Group
- US Agency for International Development ECOIII Project
- VMS Consultants
- Volpak Systems
- Yogi Engineers

Thank You

yash.shukla@cept.ac.in

